Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Trifluoromethyl-1H-benzimidazol-3ium perchlorate

Ming-Liang Liu

College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
Correspondence e-mail: jgsdxIml@163.com

Received 14 September 2011; accepted 25 September 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.051 ; w R$ factor $=0.140 ;$ data-to-parameter ratio $=15.6$.

In the title salt, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{ClO}_{4}^{-}$, the atoms of the benzimidazole ring (including H atoms) are nearly coplanar (r.m.s. deviation of the fitted atoms $=0.0122 \AA$) and the triflouromethyl group lies out of this plane. The perchlorate anion adopts a distorted tetrahedral conformation with the $\mathrm{Cl}-\mathrm{O}$ bond distances ranging from 1.412 (3) to 1.439 (2) \AA. The benzimidazolium cations are linked to adjacent anions by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming chains.

Related literature

For background to molecular-ionic compounds, see: Yu et al. (2004); Chen et al. (2009); Ge et al. (2007).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{ClO}_{4}^{-}$
$c=9.3838(19) \AA$
$M_{r}=286.60$
Triclinic, $P \overline{1}$
$a=7.6274$ (15) £
$b=9.0614$ (18) \AA
$\alpha=61.80$ (3) ${ }^{\circ}$
$\beta=81.98$ (3) ${ }^{\circ}$
$\gamma=75.85$ (3) ${ }^{\circ}$
$V=554.0(3) \AA^{3}$

$Z=2$

Mo $K \alpha$ radiation
$\mu=0.40 \mathrm{~mm}^{-1}$

Data collection
Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)

$$
T_{\min }=0.963, T_{\max }=0.971
$$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051 \quad 163$ parameters
$w R\left(F^{2}\right)=0.140$
$S=1.04$
2535 reflections
$T=293 \mathrm{~K}$
$0.36 \times 0.32 \times 0.28 \mathrm{~mm}$

5756 measured reflections 2535 independent reflections 1980 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

H -atom parameters constrained
$\Delta \rho_{\max }=0.49 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2$	0.86	2.05	$2.891(3)$	164
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3$	0.86	2.59	$3.254(4)$	135
N2-H2A N^{i}	0.86	1.98	$2.822(3)$	167

Symmetry code: (i) $x, y-1, z+1$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

The author thanks an anonymous referee from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2027).

References

Chen, M. W., Zhang, X. G., Zhong, X. G. \& Hu, M. L. (2009). Synthesis, pp. 1431-1436.
Ge, F. L., Wang, Z. X., Wan, W., Liu, W. C. \& Hao, L. (2007). Tetrahedron Lett. 48, 3251-3254.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yu, W. Y., Zhou, Z. M., Zhou, X. Q. \& Yu, C. X. (2004). J. Chem. Crystallogr. pp. 597-601.

supplementary materials

2-Trifluoromethyl-1 H -benzimidazol-3-ium perchlorate

M.-L. Liu

Comment

Some interesting physical properties of simple molecular-ionic crystals containing organic cations and anions have been discussed by several authors (Yu et al., 2004; Chen et al., 2009; Ge et al., 2007).

The asymmetric unit of the present compound, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{H}_{6} \mathrm{~F}_{3}{ }^{+} \mathrm{ClO}_{4}{ }^{-}$consists of one 2-trifluoromethyl-1 H -benzimidazole cation and one perchlorate anion, Figure 1.

The atoms of the benzimidazole ring (including the H atoms) are nearly co-planar with a rms deviation of the fitted atoms of $0.0122 \AA$. Atom C8 lies out of this plane. The perchlorate anion is a distorted tetrahedron, the average $\mathrm{C}-\mathrm{O}$ bond distances range from $1.412(3) \AA$ to $1.439(2) \AA$, the $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angles range from $107.71(17)^{\circ}$ to $110.65(15)^{\circ}$.

The 2-trifluoromethyl-1 H-benzimidazole cations are linked to adjacent anions by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form chains, Table 1, Figure 2. The hydrogen bond involving N2-H2A is a three-centre contact to atoms O2 and O3 in which the $\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 2,2.05 \AA$, is shorter than the $\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 3,2.59 \AA$ with the angles at H 2 A being 164° and 137° respectively. Centrosymmetrically related chains run through each unit cell and these are linked into ribbons by a $\pi-\pi$ interaction between the phenyl rings, $\mathrm{Cg} 1 \cdots \mathrm{Cg} 1(-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}), 4.039$ (2) \AA, perpendicular distance between rings, 3.5948 (14) \AA and slippage, $1.841 \AA$. These ribbons run perpendicular to the a-axis.

Experimental

$0.144 \mathrm{~g}(1 \mathrm{mmol})$ of 2-trifluoromethyl-1 H -benzimidazole was firstly dissolved in 30 ml methanol, to which $0.1 \mathrm{~g}(1 \mathrm{mmol})$ of perchloric acid was added to give a solution without any precipitate while stirring at the ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 2 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temper-ature-independent $\left(\varepsilon=\mathrm{C} /\left(\mathrm{T}-\mathrm{T}_{0}\right)\right)$, suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature within the measured temperature (below the melting point).

Refinement

The asymmetric unit was selected to form a hydrogen-bonded unit. H atoms attached to C atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ with $U_{\text {iso }}=1.2 U \mathrm{eq}$ and allowed to ride. The H atoms attached to the N atoms were located on a difference map. The $\mathrm{N}-\mathrm{H}$ distances were restrained to $0.86 \AA$ and refined as riding atoms with $U_{\text {iso }}=1.2 U$ eq in the final cycles of refinement. The 200 reflection was omitted from the refinement because of extinction.

supplementary materials

Figures

Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

2-Trifluoromethyl-1H-benzimidazol-3-ium perchlorate

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{ClO}_{4}{ }^{-}$
$M_{r}=286.60$
Triclinic, $P \mathrm{~T}$
Hall symbol: -P 1
$a=7.6274$ (15) \AA
$b=9.0614(18) \AA$
$c=9.3838(19) \AA$
$\alpha=61.80(3)^{\circ}$
$\beta=81.98(3)^{\circ}$
$\gamma=75.85(3)^{\circ}$

Data collection

Rigaku Mercury2
diffractometer
Radiation source: fine-focus sealed tube graphite
CCD_Profile_fitting scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.963, T_{\text {max }}=0.971$
5756 measured reflections

$$
\begin{aligned}
& V=554.0(3) \AA^{3} \\
& Z=2 \\
& F(000)=288 \\
& D_{\mathrm{x}}=1.718 \mathrm{Mg} \mathrm{~m} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \theta=3.4-26^{\circ} \\
& \mu=0.40 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.36 \times 0.32 \times 0.28 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}

Least-squares matrix: full

2535 independent reflections
1980 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-9 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-12 \rightarrow 12$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.140$
$S=1.04$
2535 reflections
163 parameters
0 restraints

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0636 P)^{2}+0.384 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.49 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
F1	$0.3287(4)$	$0.0295(2)$	$0.1487(2)$	$0.0793(7)$
F2	$0.4027(3)$	$0.2471(3)$	$-0.0564(2)$	$0.0697(6)$
F3	$0.1269(3)$	$0.2305(3)$	$-0.0094(3)$	$0.0791(7)$
N1	$0.2447(3)$	$0.4517(3)$	$0.1052(3)$	$0.0430(5)$
H1A	0.2375	0.5249	0.0045	0.052^{*}
N2	$0.2695(3)$	$0.2099(3)$	$0.3226(2)$	$0.0379(5)$
H2A	0.2802	0.1020	0.3852	0.046^{*}
C1	$0.2548(3)$	$0.3343(3)$	$0.3721(3)$	$0.0374(5)$
C2	$0.2378(4)$	$0.4892(3)$	$0.2328(3)$	$0.0395(6)$
C3	$0.2214(4)$	$0.6432(4)$	$0.2384(4)$	$0.0534(7)$
H3	0.2090	0.7476	0.1453	0.064^{*}
C4	$0.2248(5)$	$0.6313(4)$	$0.3883(4)$	$0.0603(8)$
H4	0.2148	0.7308	0.3976	0.072^{*}
C5	$0.2429(5)$	$0.4748(4)$	$0.5284(4)$	$0.0593(8)$
H5	0.2448	0.4737	0.6277	$0.071 *$
C6	$0.2577(4)$	$0.3237(4)$	$0.5248(3)$	$0.0510(7)$
H6	0.2691	0.2199	0.6185	0.061^{*}
C7	$0.2639(3)$	$0.2848(3)$	$0.1636(3)$	$0.0376(5)$
C8	$0.2812(4)$	$0.1957(4)$	$0.0614(3)$	$0.0483(7)$
C11	$0.21788(9)$	$0.83165(8)$	$-0.28977(7)$	$0.0426(2)$
O1	$0.3244(3)$	$0.8661(3)$	$-0.4364(2)$	$0.0571(6)$
O2	$0.1589(4)$	$0.6730(3)$	$-0.2310(3)$	$0.0692(7)$
O3	$0.3197(4)$	$0.8220(5)$	$-0.1699(3)$	$0.0965(10)$
O4	$0.0612(4)$	$0.9641(3)$	$-0.3218(3)$	$0.0806(8)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	$0.131(2)$	$0.0469(11)$	$0.0617(12)$	$-0.0124(11)$	$-0.0017(12)$	$-0.0287(9)$
F2	$0.0740(13)$	$0.0940(15)$	$0.0507(10)$	$-0.0281(11)$	$0.0205(9)$	$-0.0414(10)$
F3	$0.0649(12)$	$0.1233(19)$	$0.0777(14)$	$-0.0174(12)$	$-0.0104(10)$	$-0.0676(14)$
N1	$0.0551(13)$	$0.0378(11)$	$0.0265(10)$	$-0.0127(10)$	$0.0002(9)$	$-0.0058(9)$
N2	$0.0466(12)$	$0.0319(10)$	$0.0273(10)$	$-0.0068(9)$	$-0.0029(9)$	$-0.0071(8)$
C1	$0.0396(13)$	$0.0364(13)$	$0.0318(12)$	$-0.0081(10)$	$-0.0015(10)$	$-0.0118(10)$
C2	$0.0442(14)$	$0.0383(13)$	$0.0316(12)$	$-0.0115(11)$	$-0.0005(10)$	$-0.0112(10)$
C3	$0.068(2)$	$0.0385(14)$	$0.0502(17)$	$-0.0166(14)$	$-0.0008(14)$	$-0.0149(13)$
C4	$0.076(2)$	$0.0521(18)$	$0.065(2)$	$-0.0212(16)$	$0.0012(17)$	$-0.0337(16)$
C5	$0.076(2)$	$0.068(2)$	$0.0453(16)$	$-0.0156(17)$	$-0.0024(15)$	$-0.0339(16)$
C6	$0.0646(18)$	$0.0515(16)$	$0.0323(13)$	$-0.0109(14)$	$-0.0049(12)$	$-0.0149(12)$
C7	$0.0389(13)$	$0.0394(13)$	$0.0291(12)$	$-0.0098(10)$	$0.0010(10)$	$-0.0111(10)$
C8	$0.0560(17)$	$0.0536(16)$	$0.0374(14)$	$-0.0143(13)$	$0.0025(12)$	$-0.0219(13)$
C11	$0.0500(4)$	$0.0392(3)$	$0.0302(3)$	$-0.0106(3)$	$-0.0028(2)$	$-0.0079(2)$
O1	$0.0636(13)$	$0.0512(12)$	$0.0351(10)$	$-0.0059(10)$	$0.0047(9)$	$-0.0067(9)$
O2	$0.0965(18)$	$0.0503(13)$	$0.0569(14)$	$-0.0310(12)$	$0.0130(13)$	$-0.0178(11)$
O3	$0.091(2)$	$0.158(3)$	$0.0524(14)$	$-0.057(2)$	$-0.0063(14)$	$-0.0410(17)$
O4	$0.0728(16)$	$0.0586(15)$	$0.0820(18)$	$0.0036(12)$	$0.0105(14)$	$-0.0207(13)$

Geometric parameters (\AA, ${ }^{\circ}$)

F1-C8	$1.312(4)$
F2-C8	$1.317(3)$
F3-C8	$1.328(4)$
N1-C7	$1.318(3)$
N1-C2	$1.382(3)$
N1-H1A	0.86
N2-C7	$1.318(3)$
N2-C1	$1.385(3)$
N2-H2A	0.86
C1-C2	$1.385(3)$
C1-C6	$1.393(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.395(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 2$	$108.6(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	125.7
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	125.8
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 1$	$108.5(2)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	125.8
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	125.7
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{C} 2$	$106.3(2)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 6$	$131.7(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$121.9(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$106.3(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$132.0(2)$

$\mathrm{C} 3-\mathrm{C} 4$	$1.363(4)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.397(5)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.362(4)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{C} 8$	$1.495(4)$
$\mathrm{C} 11-\mathrm{O} 3$	$1.412(3)$
$\mathrm{C} 11-\mathrm{O} 4$	$1.420(3)$
$\mathrm{Cl} 1-\mathrm{O} 1$	$1.434(2)$
$\mathrm{C} 11-\mathrm{O} 2$	$1.439(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	118.8
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$115.8(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	122.1
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	122.1
$\mathrm{~N} 2-\mathrm{C} 7-\mathrm{N} 1$	$110.3(2)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$125.6(2)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$124.1(2)$
$\mathrm{F} 1-\mathrm{C} 8-\mathrm{F} 2$	$108.7(3)$
$\mathrm{F} 1-\mathrm{C} 8-\mathrm{F} 3$	$108.6(3)$
$\mathrm{F} 2-\mathrm{C} 8-\mathrm{F} 3$	$106.2(2)$
$\mathrm{F} 1-\mathrm{C} 8-\mathrm{C} 7$	$110.7(2)$

sup-4

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.6(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$116.0(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	122.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	122.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$122.2(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	118.9
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	118.9
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$122.4(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	118.8
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$0.7(3)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 6$	$-178.2(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$0.2(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.0(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-0.5(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$178.5(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.4(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.5(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-178.0(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.6(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.2(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.2(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.3(5)$

$\mathrm{F} 2-\mathrm{C} 8-\mathrm{C} 7$	$111.0(2)$
$\mathrm{F} 3-\mathrm{C} 8-\mathrm{C} 7$	$111.4(2)$
$\mathrm{O} 3-\mathrm{Cl} 1-\mathrm{O} 4$	$110.0(2)$
$\mathrm{O} 3-\mathrm{Cl} 1-\mathrm{O} 1$	$110.25(16)$
$\mathrm{O} 4-\mathrm{Cl} 1-\mathrm{O} 1$	$109.06(15)$
$\mathrm{O} 3-\mathrm{C} 11-\mathrm{O} 2$	$109.08(18)$
$\mathrm{O} 4-\mathrm{Cl} 1-\mathrm{O} 2$	$107.71(17)$
$\mathrm{O} 1-\mathrm{Cl} 1-\mathrm{O} 2$	$110.65(15)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$178.7(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.0(4)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 7-\mathrm{N} 1$	$-0.6(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$178.0(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2$	$0.2(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$-178.4(2)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 1$	$-9.0(4)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 1$	$169.4(3)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 2$	$-129.8(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 2$	$48.6(4)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 3$	$112.1(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 3$	$-69.5(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 2$	0.86	2.05	$2.891(3)$	164
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 3$	0.86	2.59	$3.254(4)$	135
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	1.98	$2.822(3)$	167

Symmetry codes: (i) $x, y-1, z+1$.

supplementary materials

Fig. 1

Fig. 2

